Square of a Hamilton cycle in a random graph

نویسندگان

  • Patrick Bennett
  • Andrzej Dudek
  • Alan Frieze
چکیده

We show that the threshold for the random graph Gn,p to contain the square of a Hamilton cycle is p = 1 √ n . This improves the previous results of Kühn and Osthus and also Nenadov and Škorić.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square of Hamilton cycle in a random graph

We show that p = √ e n is a sharp threshold for the random graph Gn,p to contain the square of a Hamilton cycle. This improves the previous results of Kühn and Osthus and also Nenadov and Škorić.

متن کامل

Adding random edges to create the square of a Hamilton cycle

We consider how many random edges need to be added to a graph of order n with minimum degree αn in order that it contains the square of a Hamilton cycle w.h.p..

متن کامل

Robustness of Pósa’s conjecture Master Thesis

The kth power of a cycle is obtained by adding an edge between all pairs of vertices whose distance on the cycle is at most k. In 1962, Pósa conjectured that a graph G on n vertices contains a square of a Hamilton cycle if it has minimum degree δ(G) ≥ 3 n, and, 11 years later, Seymour claimed that δ(G) ≥ k k+1 n is sufficient for the appearance of a kth power of a Hamilton cycle for any k ≥ 2. ...

متن کامل

Deciding Graph non-Hamiltonicity via a Closure Algorithm

We present a matching and LP based heuristic algorithm that decides graph non-Hamiltonicity. Each of the n! Hamilton cycles in a complete directed graph on n + 1 vertices corresponds with each of the n! n-permutation matrices P, such that pu,i = 1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n + 1. A graph instance (G) is initially coded as exclusion set ...

متن کامل

On Pósa's Conjecture for Random Graphs

The famous Pósa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Komlós, Sarközy and Szemerédi. Here we prove that if p ≥ n−1/2+ε, then asymptotically almost surely, the binomial random graph Gn,p contains the square of a Hamilton cycle. This provides an ‘approximate threshold’ for the property in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016